[高数]一元函数的泰勒公式及其应用


题 目 排 序: 题目热度  |     

【1】



【2】



【3】



【4】

确定常数a和b的值,使 f(x)=x− (a+bex2)sinx当x→0时是x的5阶无穷小量.
【5】

设f(x)在x=0处n(n≥2)阶可导且
lim
x→0
[1+f(x)]
1
xn
=e4,求f(0), f ′(0),…, f(n)(0).
【6】



【7】



【8】



【9】



【10】

求下列函数f(x)在x=0处带拉格朗日余项的n阶泰勒公式:

【11】



【12】



【13】



【14】



【15】



【16】



【17】



【18】



【19】



【20】



【21】



【22】



【23】



【24】



【25】







0.2633s